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Abstract

Creating models of real scenes is a complex task for which the use of traditional modeling techniques is inappropriate. For
this task, laser rangefinders are frequently used to sample the scene from several viewpoints, with the resulting range images
integrated into a final model. In practice, due to surface reflectance properties, occlusions and accessibility limitations, certain
areas of the scenes are usually not sampled, leading to holes and introducing undesirable artifacts in the resulting models. We
present an algorithm for filling holes on surfaces reconstructed from point clouds. The algorithm is based on moving least
squares and can interpolate both geometry and shading information. The reconstruction process is mostly automatic and the
sampling rate of the given samples is preserved in the reconstructed areas. We demonstrate the use of the algorithm on both
real and synthetic datasets to obtain complete geometry and plausible shading.
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1. Introduction

Creating accurate models of real objects and environ-
ments is a non-trivial task for which the use of tradi-
tional modeling techniques is inappropriate. In these
situations, the use of laser rangefinders [6] seems at-
tractive due to its relative independence of the sampled
geometry and short acquisition time. The combined
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use of range and color images is very promising and
has been demonstrated to produce an unprecedented
degree of photorealism [22,25]. Unfortunately, surface
properties (e.g., low or specular reflectance), occlu-
sions and accessibility limitations cause scanners to
miss some surface areas, leading to incomplete recon-
struction and introducing holes in the resulting mod-
els. This makes hole filling an important component of
object and scene reconstruction. Its importance can be
better appreciated when considering that, often times,
it will not be possible to re-scan the original scene for
acquiring extra samples. This may happen because the
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(a) (b) (c)

Fig. 1. Partial model of the UNC reading room, a real environment digitized with a 3D laser scanner. The floor texture has been replaced
to emphasize the holes in the chair model. (a) Chair model reconstructed from the original samples only. Notice the big holes and missing
outer surface on its left. (b) Model obtained from (a) using the symmetry-based techniques described in [40]. Despite the clear improvement,
many small holes are still visible. (c) Complete model obtained applying our hole-filling algorithm to the model shown in (b).

scene might have changed or due to cost limitations.
In these situations, one should try to obtain the best
possible reconstruction using only the available sam-
ples. Creating high quality mesh representations for
objects in the scene based on such incomplete infor-
mation remains a challenge [45].

The problem of filling holes in range data can be di-
vided into two sub-problems: (i) identifying the holes,
and (ii) finding appropriate parameterizations that al-
low the reconstruction of the missing parts using the
available data. Unfortunately, none of these problems
are trivial because holes arising from the scanning
of geometrically complex surfaces (e.g., twisted, self-
occluding surfaces) can be quite intricate [11]. How-
ever, in many situations of practical interest, holes
occurring in range images present simple topologies.
This is the case, for example, of many holes found
when scanning interior environments and most ob-
jects. For these cases, the quality of the reconstructed
3D meshes can be significantly improved with the use
of relatively simple algorithms.

This paper presents a revised and extended version
of the work originally described in [41]. These ex-
tensions include an in-depth discussion comparing the
proposed technique to state-of-the-art approaches used
for hole filling [11,18,20,34], and several new surface-
reconstruction examples with their associated statis-
tics. Like [41], it discusses an approach for automat-

ically identifying and filling holes in locally smooth
regions of surfaces sampled as point clouds. The pro-
posed algorithm can be applied to manifolds and sur-
faces with boundaries. In the later case, user assistance
is required to avoid the inherent ambiguity of deciding
which holes are artifacts of undersampled regions and
which ones may define true surface boundaries. The
technique does not provide a general solution to the
hole-filling problem. In particular, it does not handle
holes with arbitrary topologies or on highly twisted
geometry. Nevertheless, it can be applied to a large
range of practical situations, is conceptually very sim-
ple and its implementation is straightforward. Essen-
tially, the algorithm takes a point cloud as input and
produces an intermediate representation consisting of
a triangle mesh, which is then analyzed for the exis-
tence of boundary edges (edges belonging to a single
triangle). The occurrence of a hole implies the exis-
tence of a cycle defined by boundary edges. Once a
boundary edge is found, the algorithm traces the entire
boundary. A ring of points around the boundary, called
the boundary vicinity, is then used to interpolate the
hole using a moving least squares (MLS) procedure.

Our algorithm presents several desirable features:

– Hole filling is performed after meshing and, there-
fore, the algorithm can use any surface reconstruc-
tion technique that produces a triangle mesh;

– Since MLS interpolates the original samples, the
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algorithm guarantees that the reconstructed patches
smoothly blend into the original mesh;

– It can be used to fill holes on both closed surfaces
as well as on surfaces with boundaries;

– The reconstructed patches preserve the original
sampling rate of their vicinities;

– As the new primitives are distinguished from the
original points, they can be processed further;

– The processing is limited to the vicinities of holes.

We demonstrate the effectiveness of our approach on
both real and synthetic datasets and show that it can
significantly improve the overall quality of the mod-
els. We also show that for locally smooth surfaces,
the described technique produces better results than
the state-of-the-art hole-filling techniques [11,18]. In
particular: (i) the reconstructed patches blend with the
original model in a smoother way, (ii) it preserves the
original mesh, and (iii) the resulting models contain a
smaller number of vertices and triangles than the ones
produced by other techniques [11,18] (see Section 6).

Figure 1(a) shows a partial model of the UNC read-
ing room, an interior environment scanned with a laser
rangefinder. Color, except for the floor texture, was
obtained from photographs taken with a digital cam-
era [22]. The clear floor texture was chosen in order
to highlight the existence of holes in the chair model.
Figure 1(b) shows the chair model after it has been
processed using the techniques described in [40]. De-
spite the considerable improvement, many small holes
are still visible in the chair. Figure 1(c) shows the same
scene after our hole-filling algorithm has been applied
to the chair model of Figure 1(b). Notice that the holes
have been removed.

The remaining of the paper is organized as follows:
Section 2 discusses some related work. Section 3
provides a brief review of the moving least squares
method. The details of the hole-filling algorithm are
described in Section 4. Section 5 presents some re-
sults obtained with the use of the proposed algorithm.
A detailed discussion and comparison of our approach
with other hole-filling techniques is presented in Sec-
tion 6. Finally, Section 7 summarizes the paper and
discusses some directions for future exploration.

2. Related Work

Hole filling is crucial for creating high quality mesh
representations from scanned data. The chair model
shown in Figure 7 was reconstructed from samples
acquired during the scanning of real room-size envi-
ronment. It is illustrative of a common situation: often
times it is not possible or practical to cover the entire
surface of an object even if several scanning positions
are used. Moreover, the sampling density tends to vary
across the scanned surface.

The problem of surface reconstruction from scattered
data has been extensively studied in the past several
years and many surface reconstruction algorithms have
been proposed. These algorithms can be generally
classified as computational geometry, algebraic and
implicit methods. Computational geometry methods
use mechanisms such as Delaunay triangulation [2,13]
and region growing [4,7,15,23], and tend to leave holes
in undersampled regions. Bernardini’s ball-pivoting
approach [4] can fill the resulting holes with succes-
sive executions of the algorithm using increasingly
larger ball radii. The algorithm has no provision for
selectively filling only certain holes and the maximum
radius size needs to be specified.

Algebraic methods (e.g., [35,36]) recover a surface by
fitting a smooth function to the set of input points.
Such methods produce hole-free models but cannot
be used to reconstruct complex geometry or surfaces
with boundaries.

The most popular approach for surface reconstruc-
tion is based on the use of implicit functions [8,10–
12,16,24,26,32,37,43]. Implicit function methods,
with the exception of [16], also produce hole-free
models, but cannot be used to directly reconstruct
surfaces with boundaries. In case the surface contains
boundaries, these methods tend to produce incorrect
results because implicit functions will, depending on
the geometry at the boundary’s neighborhood, tend
to interpolate gaps or indefinitely extend the surface
across its boundaries. Notice that, in practice, “arti-
ficial boundaries” may be introduced in the scanned
dataset as a result of unsampled regions. This is, for
example, the case of the armchair model shown in
Figure 7(a), where the bottom of the chair and its
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leftmost part were not visible to the scanner. While
the approach introduced by Hoppe et al. [16] can
preserve boundaries, it assumes a constant sampling
density across the entire surface and will leave holes
in undersampled regions.

Curless’s and Levoy’s VRIP algorithm [10] uses an
implicit method for surface reconstruction and hole
filling. The approach consists of computing signed dis-
tance functions from a set of aligned meshes obtained
from range scans. These functions are then blended
and the final surface is extracted using the marching
cubes algorithm [21]. In order to perform hole filling,
the algorithm requires information about the line of
sight of the scanner, and tends to perform poorly if the
available information does not appropriately cover the
entire volume enclosing the object. Like other implicit
methods, it cannot be used to reconstruct surfaces with
boundaries. According to Davis et al. [11], this method
may reconstruct surfaces that look less plausible than
a smooth interpolation of the observed surfaces.

Davis et al. [11] use a volumetric diffusion approach,
analogous to inpainting techniques [5,27] to fill holes
in range scans. The technique is targeted at the re-
construction of densely sampled closed surfaces. The
process consists of converting a surface into a voxel-
based representation with a clamped signed distance
function. The diffusion algorithm consists of alternat-
ing steps of blurring and compositing, after which the
final surface is extracted using marching cubes [21].
Like in our approach, Davis’s et al. technique per-
forms hole filling after surface reconstruction and the
processing is constrained to the neighborhood of the
holes. Unlike our approach, this algorithm is based on
the use of an implicit function and can handle holes
with more complex topology and twisted geometry.
However, it cannot be applied to surfaces with bound-
aries and does not preserve the vertices of the original
mesh. Moreover, the reconstructed patch is not guar-
anteed to smoothly blend with the rest of the surface,
and, like in [10], may look little plausible.

Alexa et al. [1] use point sets to represent shapes and
employ an approach similar to ours in the sense that
they also locally project points onto planes and fit
surfaces through those points. These fitted surfaces
are used to down-sample or up-sample the original
set of points, in order to guarantee that the resulting

point rendering of the underlying surface has proper
image space resolution. Their method, however, does
not attempt to reconstruct a mesh representation or fill
holes on surfaces.

Verdera et al. [38] use an approach similar to the
one described by Davis et al. [11]. They turn a mesh
into an implicit representation, then use a PDE sys-
tem to inpaint the missing regions. Savchenko and Ko-
jekine [33] deploy a space mapping approach to ex-
tend existing surface boundaries and fill the gaps us-
ing RBFs. Clarenz et al. [9] minimize the Willmore
energy to ensure continuity of the normal field using
PDEs.

Liepa [20] presented an algorithm targeted toward fill-
ing holes in oriented connected manifold meshes. It
fills holes by first identifying hole boundaries, trian-
gulating the holes, and finally smoothing the resulting
patches. The triangulation is based on an O(n3) al-
gorithm that produces a minimum area triangulation,
thus requiring the resulting patches to be smoothed
during the last stage of the algorithm.

More recently, Ju [18] introduced a volumetric algo-
rithm that takes a polygonal mesh and creates a closed
surface. It starts by scan converting the mesh into vox-
els, where holes are filled by patching boundary cycles
using minimal surfaces. This technique is appropriate
for filling very small holes or larger holes in locally
flat surfaces. Like other volumetric approaches where
surfaces are extracted using contouring techniques, the
resulting mesh does not preserve the original vertices.

Sharf et al. [34] reconstruct fine details in missing re-
gions on geometric complex surfaces represented by
point clouds, which our approach cannot produce. It
uses a coarse to fine approach based on an octree to
copy and paste samples from a set of example regions
(at the same level of detail) to the missing ones. The
technique can produce some impressive results, but in
the absence of appropriate examples, or for noisy or
poorly sampled surfaces, the algorithm tends to pro-
duce poor results.
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3. Moving Least Squares

Moving least squares (MLS) provides a class of com-
plete solutions to the problem of fitting smooth func-
tions to scattered data [19]. This is performed by in-
terpolating the original data points, which may not
be desirable in case the dataset is noisy. Our algo-
rithm, however, uses MLS only to fill holes. Therefore,
surface reconstruction can be performed with any re-
construction technique and may even include a low-
pass filtering step to minimize the effects of noise.
By using MLS to guide the hole filling process, our
algorithm guarantees that the reconstructed patches
smoothly blend into the reconstructed mesh. This is
accomplished with the use of a relatively small num-
ber of samples in the vicinity of the hole boundaries.
The entire algorithm is described in Section 4. The
remaining of this section provides a quick review of
MLS interpolation. For a more in-depth discussion of
the subject, we refer the reader to [19].

Let s be a height function defined over a two-
dimensional subspace (s |= U ⊂ ℜ 2 → ℜ ) and let
pi ∈ U be a point in the domain of s. f i is a height
measurement associated with pi. The fitness of s to a
set of values f1 to fN can be measured by the error

E(s) =
N

∑
i=1

wi(s(pi)− fi)
2 (1)

where N is the total number of points and wi is the
weight associated with point pi. The best fit to the
given set of values is obtained by minimizing the error
E(s). In practice, s is usually approximated by sim-
ple polynomial functions, such as the one shown in
Equation 2 [19].

s(u,v) = a0 + a1u+ a2v+ a3u2 + a4v2 + a5uv (2)

In this case, the ai coefficients that minimize the error
are obtained by solving

a = (BWBT )
−1

BW f (3)

where B is the matrix shown in Equation 4 and W is an
n by n diagonal matrix with diagonal elements equal
to wi.

B =




1 · · · 1

u1 · · · un

v1 · · · vn

u2
1 · · · u2

n

v2
1 · · · v2

n

u1v1 · · · unvn




(4)

Such a weighted least squares solution can only rep-
resent low order surfaces, often resulting in poor ap-
proximations. To reflect the fact that samples near the
resampling positions should have more influence than
far away samples, the error function should take into
account weight factors wi, which vary with the evalu-
ation point:

Ep(s) =
N

∑
i=1

wi(p)(s(pi)− fi)2 (5)

For this case, a good choice of weight function is given
by[19]:

wi(p) =
e−α d2

i (p)

d2
i (p)

(6)

Here, di(p) is the distance from the new sampling po-
sition p to the ith original sample pi (in the vicinity).
When evaluated right at an input point, this weight
function becomes infinity, thus interpolating the point.
To avoid numerical problems, evaluation right at input
points are handled individually. The parameter α con-
trols the influence of vicinity features on the region
to be resampled. As the weight functions depend on
the resampling positions, new coefficients a0 to a5 for
Equation 2 need to be computed for every resampled
point as:

a(p) = (BW (p)BT )
−1

BW (p) f (7)

where the elements of the diagonal matrix W (p) are
computed using Equation 6. Compared to the weighted
least squares method, which creates a quadric surface
for the entire hole, moving least squares compute one
quadric surface for each evaluation point and blends
them all. Therefore it can fit higher order surfaces.
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4. The Hole Filling Algorithm

In order to fill holes, new points need to be added to the
unsampled regions. To accomplish this, the algorithm
first identifies hole boundaries and their vicinities. For
each hole, it fits a plane through the vicinity points
and, for each such a point, computes its distance to
this plane as well as its projection onto the plane. The
set of distances define a height field around the hole
which is then used for surface fitting. This way, the
problem of reconstructing holes in 3D is reduced to
a simpler interpolation problem. Once a surface has
been fitted to the height field using MLS, new points
for filling the hole can be obtained by resampling the
fitted surface. The basic version of the algorithm is
presented in Algorithm 1, and its details are explained
next.

4.1. Finding Holes

In order to identify holes, we start by creating a trian-
gle mesh from the input point cloud. A number of al-
gorithms exist for this purpose [2–4,13,15,16]. For the
results shown in the paper, we have used the incremen-
tal surface reconstruction algorithm described in [15],
which was chosen due to its simple implementation.

A hole consists of a loop of boundary edges. A bound-
ary edge is defined as an edge belonging to a single
triangle, as opposed to shared edges, which are shared
by two triangles. By tracking boundary edges, holes
can be identified automatically. Note, however, that
there are two kinds of distinct boundaries: internal and

Algorithm 1. The Hole-Filling Algorithm

1: Create a triangle mesh from the input point cloud;
2: repeat
3: Automatically find a hole boundary and its

vicinity;
4: Compute a reference plane for the hole vicinity;
5: Compute the distances of the vicinity points to

the plane;
6: Fit a surface through this height field using

MLS;
7: Fill the hole by resampling the fitted surface
8: until no holes exist

external ones. An internal boundary delimits a hole
on a surface. An external boundary, in turn, delimits
either a patch (“island”) inside a hole, or the limits of
a surface, such as in the case of the end portions of the
cylindrical surface shown in Figure 2. From the exam-
ple of the cylinder, it becomes clear that not all holes
should be necessarily filled and that user assistance is
required in order to guarantee proper reconstruction.

Fig. 2. Cylinder. (a) Triangle mesh with the hole and its boundary
vicinity identified. (b) New points added (c) Reconstructed mesh.

4.2. Computing the Reference Plane

Once a hole has been identified, the next step is to use
a ring of points around the boundary of the hole to
provide a context for its interpolation. A height field is
obtained by computing the distances from these points
to a reference plane, which is the best fit plane to the
set of points in the vicinity of the hole. The plane’s
position and orientation are computed as follows: first,
the average O = (x̄, ȳ, z̄) of all vicinity points is com-
puted as the origin of a new coordinate system asso-
ciated to the plane. A matrix M is obtained by sub-
tracting O from all points in the vicinity (Equation 8).
Then, Singular Value Decomposition (SVD) [31] is
used to compute the eigenvectors and eigenvalues of
MT M. The two eigenvectors with the largest absolute
values span the reference plane and correspond to the
U and V axes shown in Figure 3. The third eigenvec-
tor represents the plane normal (S axis).

M =




x1 − x̄ y1 − ȳ z1 − z̄

x2 − x̄ y2 − ȳ z2 − z̄

· · ·
xN−1 − x̄ yN−1 − ȳ zN−1 − z̄

xN − x̄ yN − ȳ zN − z̄




(8)
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4.3. Determining the Resampling Positions

Each vicinity point is orthographically projected into
the reference plane (UV plane), producing a pair of
coordinates (u,v) and a height s computed as its dis-
tance to the reference plane. These values are used to
fit the surface using MLS.

It is important that the set of points used to resample
the hole have the same sampling density as the vicin-
ity points. Two criteria are used for determining the
resampling positions:

– The projections of new points should fall on the
projection of the hole on the reference plane;

– The minimum distance from any new point to any
other one (either new or vicinity point) should be
bigger than a threshold.

Fig. 3. The UV projection plane

While the first criterion seems self-evident, the sec-
ond one is used to guarantee good remeshing results,
since some reconstruction techniques require the in-
put points to be spaced as evenly as possible [15,16].
The vicinity mesh is orthographically projected onto
the UV plane, defining a mask. This situation is il-
lustrated in Figure 4 for the case of a hole topolog-
ically equivalent to a disk. In case the hole contains
“islands”, they should also be projected and will be
part of a disconnected mask. The mask image is tra-
versed in scan line order using the step size compute
using Equation 9. New sampling positions are then set
over a regular grid inside the hole in the UV plane. If
the distance between a point and the vicinity mask is
less than 0.5× stepsize, such a point is not used as a
resampling point.

stepsize =
√

area
3n

(9)

Equation 9 provides a heuristic for spacing the resam-
ple positions inside a hole. n is the number of points
on the boundary of the hole and area is the sum of the
areas of all triangles connected with these points. The
vicinity of the hole is then defined as the set of points
whose distances from the boundary of the hole is less
than β × stepsize. The “thickness” of the vicinity ring
is controlled by the parameter β .

4.4. Fitting the Surface

For each new point created to fill holes, a solution of
Equation 7 provides the coefficients of Equation 2 nec-
essary for determining s(u,v). After that, the transfor-
mation from the UVS coordinate system to the XYZ
coordinate system is straightforward. Similarly, the
colors (R,G,B channels) associated to the points in the
vicinity of a hole are treated as three separate height
functions, from which the colors of the new points are
resampled. This is achieved by replacing the height
value of each vicinity point with the value of one of its
associated color channels at a time. The resulting three
height functions representing the three color channels
are reconstructed using MLS and are resampled us-
ing a procedure similar to the one used to recover the
missing geometric information. After the new points
have been introduced, the final step is to remesh the
complete model. Figure 4 illustrates the intermediate
steps of the algorithm for the simple case of a planar
surface.

  

Fig. 4. Intermediate results of the algorithm. (left) A triangle mesh
with the projection of the vicinity points highlighted. (center) Mask
image for the projection of the vicinity points onto the reference
plane. (right) Reconstructed mesh.
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5. Results

We have implemented the described algorithm and
used it to fill holes in models of both real and syn-
thetic objects. In all cases, the input to the algorithm
consisted of unorganized point clouds. For real ob-
jects, we used datasets acquired with laser scanners.
The point clouds for synthetic objects were obtained
by rendering 3D models and saving the contents of
the corresponding color and depth buffers. Such in-
formation was later used to reproject colored points
in 3D. We used the surface reconstruction algorithm
described in [15] to create the initial triangle meshes
and to remesh the model after new points were added.
For the examples shown in the paper, we used α = 1

16
(Equation 6). The experiments were performed on a
2.0 GHz Pentium 4 PC with 512 MB of memory. Ta-
ble 1 presents some statistics and the running times
for applying our algorithm to the examples shown in
the paper.

In order to illustrate the effectiveness of our algo-
rithm, we used the techniques described in [40] to
segment and reconstruct a chair model from range im-
ages acquired from a real environment (the UNC read-
ing room). We then applied the proposed algorithm
to the resulting model. Figure 7(a) shows the original
samples of the chair rendered as a triangle mesh. No-
tice the existence of a big hole. Figure 7(b) shows the
reconstruction of the same chair model after the use
of the symmetry-based techniques described in [40].
Many small holes are still left due to the nonexistence
of data in either side of the symmetry plane and to
the inability of the surface reconstruction algorithm
used [15] to work in areas containing local variations
of sampling density. Figure 7(c) shows the resulting
chair model after applying our hole filling algorithm
to the model shown in (b). Notice that the holes have
been eliminated. The original incomplete chair model
has 41,511 points and 82,065 triangles. Those num-
bers change to 64,159 points and 126,588 triangles
after reconstruction using symmetry information [40].
The complete chair model (geometry and color), re-
constructed with the hole-filling algorithm, has 65,114
vertices and 136,002 triangles, and was obtained in
10.93 seconds.

Figure 1 shows the three stages of the reconstruction

of the chair model in a real environment. The remain-
ing of the scene (walls, shelves, etc.) was also recon-
structed using the pipeline presented in [40]. The orig-
inal reading room scene was edited by replacing the
floor texture with a clear one and by repositioning the
chair in order to emphasize the existence of holes in
the model (Figures 1(a) and (b)).

Figure 8(a) shows the Stanford bunny, which is known
for containing a few holes in its bottom. The dataset
consists of 35,947 points and 1,246 of these points
were used as vicinity points for filling all the holes.
Figure 8(b) shows the resulting model after hole fill-
ing. It contains 36,478 points and was obtained in 6.43
seconds. The previous two examples illustrate that our
algorithm can be applied to both surfaces with bound-
aries as well as closed surfaces.

The bust and angel models shown in Figures 9 and
Figure 10, respectively, are synthetic models used il-
lustrate the steps of the algorithm. In Figure 9(a), one
sees the triangle mesh reconstructed from the point
cloud. The highlighted points represent the vicinity of
the hole, used as input for the MLS interpolation. Fig-
ure 9(b) shows the points resampled from the interpo-
lated surface. The final model is shown in Figure 9(c).
The larger reconstruction time for this model is as
explained by the bigger number of resampled points
(3,309), computed as the number of final point minus
the number of original points (see Table 1).

Figure 10(a) shows an angel model with a hole in one
its wings. The vicinity points are highlighted to show
the identified hole. Figure 10(b) shows the points re-
sampled from the patch that fills the hole. Figure 10(c)
presents the reconstructed model, while Figure 10(d)
shows the original model for comparison. Notice that
although not the same as the original surface, the re-
constructed patch is a plausible one.

Figure 11 illustrates the local nature of our algorithm.
Figure 11(b) shows the Happy Buddha model after a
few patches (highlighted in Figure 11(a)) have been
removed, partially taking away some surface details.
The locations where the patches were removed from
were chosen to cover both low and high-frequency
surface areas. The surfaces visible through the holes
correspond to the back of the statue. The resulting
model, after the five patches have been removed, con-
tains 143,298 samples . The total number of vicinity
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Table 1
Statistics and running time for different datasets

Data Set # Orig. # Vici. # Final # Orig. # Final MLS time

Points Points Points Triangles Triangles (seconds)

Armchair 64,159 1,873 65,114 126,588 136,002 10.93

Bunny 35,947 1,246 36,478 69,451 70,733 6.43

Bust 12,853 1,506 16,162 21,757 29,357 72.85

Angel 10,189 347 11,264 18,737 20,921 4.16

Buddha 143,298 1,154 144,701 290,936 293,707 10.32

points for the five holes is 1,154 samples and the num-
ber of resampled (new) points is 1,075. The time re-
quired to perform hole filling was 10.32 seconds. Fig-
ure 11(c) shows the result produced by our hole filling
algorithm. Notice that such a reconstruction is quite
plausible. Figure 11(d) displays the original model for
comparison.

The cost of searching for boundary edges is linear in
the number e of edges of the mesh. Once such an
edge is found, tracing the boundary requires, in the
worst case, following e−1 edges. Since each boundary
edge has exactly two adjacent boundary edges (which
can be identified by their shared vertices), the cost of
automatically finding hole boundaries is O(e).

The cost of the MLS fitting depends on the number k
of new points to be added and on the size of vicinity,
m, thus O(mk). Therefore, the cost of the hole-filling
algorithm is O(e+ mk). In practice, however, we ob-
serve that the running time of the algorithm is mostly
influenced by the size of the vicinity and by the num-
ber of resampled points used to fill the holes, as can
be seen in Table 1 (for instance, compare the running
times for the Bust and Buddha models).

If a point cloud is provided as input, the cost of cre-
ating a mesh from the point cloud, O(n logn) on the
number of points [15], needs to be added to the total
cost of the algorithm.

6. Discussion and Comparisons

The approaches presented by Davis et al. [11] and
by Ju [18] use contouring algorithms to reconstruct

polygonal models from intermediate voxel-based rep-
resentations. Thus, unlike in our approach, the result-
ing models do not preserve the original meshes. Ju’s
approach [18] fills holes by reconstructing minimal
surfaces, which tend to blend poorly with the original
meshes as the sizes of the holes increase. Essentially,
hole-filling techniques based on minimal surfaces only
perform well on very small holes or when the surface
is locally flat. Liepa’s technique [20] uses an O(n3) al-
gorithm for filling holes with minimal-surface patches.
These are later processed to produce smoother sur-
faces. The approach presented by Sharf et al. [34] is
intended for filling holes on highly-complex geomet-
ric regions and, therefore, is target toward a differ-
ent domain than ours. Table 2 summarizes the major
features of all these algorithms, including input type,
properties of the interpolated patches, and cost.

Figure 5 shows two smooth surfaces with boundaries
obtained after removing caps of different sizes from
the surface of a sphere. The surface on the left contains
3,001 vertices and 5,940 triangles, while the one on
the right contains 2,401 vertices and 4,740 triangles.
These surfaces were used to compare how smoothly
the patches reconstructed by the different techniques
blend with the original meshes. A sphere was chosen
as a reference shape because of its smoothness and
symmetry, and because one has a clear idea about what
to expect from an exact reconstruction.

We reconstructed the surfaces shown in Figure 5 us-
ing the techniques by Davis et al. [11], Ju [18], and
our MLS approach. Davis’s et al. and Ju’s techniques
were chosen because they are representatives of the
state-of-the-art in hole filling and their source codes
are available on the web [30,39]. Table 3 shows the
parameters used by the different algorithms. In order
to use Davis’s et al. code, the triangle meshes were
first converted to the PLY format [28] and then con-
verted to their actual input format using the Ply2Vri
program [29]. The resolution of the voxel space was
defined experimentally by setting the voxel size to 0.16
in the Ply2Vri program (73 ≈ 10.0/0.16 + 10 fringe
voxels). The third dimension of the voxel space was
chosen so that the resulting surface could fit inside the
volume. For Ju’s program [30], the volume was sub-
divided in 643 voxels (level 6 of the octree).

Figure 6 shows the reconstructed results produced by
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the three algorithms for the surfaces shown in Fig-
ure 5. Figures 6 (a), (c) and (e) were reconstructed
from the surface shown in Figure 5 (left), whereas
Figures 6 (b), (d) and (f) are reconstructions of the
surface shown in Figure 5 (right). The results shown
in the first row of Figure 6 were produced by the al-
gorithm of Davis et at [11]. Notice the existence of
some protrusions on the reconstructed patches, which
become more evident as the size of the hole increases.
The abrupt cut on the largest highlight visible in Fig-
ure 6(b) indicates that: (i) the reconstructed patch does
not smoothly blend into the original mesh and (ii) the
original mesh was not preserved. The results produced
by Ju’s technique [18] are shown in Figures 6(c) and
(d). Notice the minimal surfaces reconstructed by the
technique, showing that it can only be used for filling
small holes.

Figures 6(e) and (f) show the results produced by the
MLS technique using 180 samples in the vicinity of
each hole. The results are quite smooth, with the recon-
structed patches naturally blending themselves into the
original meshes. In Figure 6(e), the sphere was very
satisfactorily recovered. In the case of the bigger hole,
the algorithm reconstructed an egg-like shape, which
is a plausible solution for the ill-posed problem of sur-
face interpolation. The extended highlight indicates
the smooth blending of the reconstructed patch with
the original mesh. Table 4 shows the numbers of ver-
tices and triangles produced by the three algorithms.
The percentage values were computed with respect to
the corresponding numbers in the input models. The
meshes obtained with the algorithm by Davis et al. [11]
present the largest numbers of primitives, followed by
the meshes produced by Ju’s algorithm [18]. This is
due to the fact that these meshes are extracted using
contouring techniques [17,21]. As a result, the num-
ber of resulting polygons depends on the resolution
of the voxel space used, and not on the number of
original vertices. Notice the significant increase on the
numbers of vertices and triangles in the models pro-
duced by these techniques, even though a relatively
low-resolution voxel space has been used (see Table 3)
and the space is mostly empty. In these techniques,
the entire model, and not only the interpolating patch,
is extracted at voxel-space resolution.

An important feature of our algorithm is that the shape
of the resulting patches can be reasonably predicted by

Table 2
Comparison among four hole-filling algorithms. n is the number of
points in the point cloud, e is the number of edges in the polygonal
model, and v is the number of voxels used for spatial subdivision.

Algorithm Input Properties Cost

MLS points smooth transitions O(n log n)

MLS mesh smooth transitions O(e+mk)

Davis et al. partial meshes non-smooth transitions O(v)

Ju polygonal mesh minimal surfaces O(v)

Liepa oriented connected minimal surfaces O(e3)

manifold meshes later smoothed

Sharf et al. points surface features O(v)

copied from vicinity

Table 3
Parameter used to reconstruct the models shown in Figure 5. The
original sphere has radius equal to 5.0 units and the side of a
voxel was set to 0.16 units.

Algorithm / Model Figure 5(left) Figure 5(right)

Davis et al. 73×73×104 volume 73×73×135 volume

Ju 64×64×64 volume 64×64×64 volume

MLS 180 points 180 points

the vicinities of the holes. For example, as we project
the vertices belonging to the vicinity of the hole shown
in Figure 5 (right) onto the reference plane (the cut-
ting plane for the missing cap), the distances between
any two pairs of projected (U,V ) coordinates will be
smaller than the difference between their correspond-
ing heights (the S coordinates). As a result, abs( ∂S

∂U ) >

1.0 and abs( ∂S
∂V ) > 1.0, producing the resulting egg-

like shape.

Our algorithm might fail if the vicinity region presents
folds or twists, which will not define a one-to-one
mapping when projected onto the reference plane. In
this case, that part of the hole might not be filled prop-
erly. When the size of a hole increases, the possibility
of facing such a situation tends to grow. This prob-
lem could be addressed by, instead of a plane, using a
curved domain for projecting the vicinity points onto.

10



Fig. 5. Spheres with removed caps used to compare the how
smoothly the reconstructed patches produced by different algo-
rithms integrate themselves with the existing mesh. The surface
on the left contains 3,001 vertices and 5,940 triangles, while the
one on the right contains 2,401 vertices, 4,740 triangles.

Table 4
Number of vertices and triangles in the models produced by each
technique. The percentages are computed with respect to the cor-
responding values in the input models.

Algorithm / Model Figure 5(left) % Figure 5(right) %

Input 3,001 vert 100.0 2,401 vert 100.0

5,940 tris 100.0 4,740 tris 100.0

Davis et al. 10,323 vert 343.9 10,454 vert 435.4

20,904 tris 351.9 20,904 tris 441.0

Ju 6,858 vert 228.5 5,978 vert 248.9

13,712 tris 230.8 11,952 tris 252.1

MLS 3,542 vert 118.0 3,672 vert 152.9

7,080 tris 119.2 7,098 tris 149.7

7. Conclusions and Future Work

Reflectance properties, occlusions and accessibility
limitations can cause scanners to miss some surfaces,
lending to incomplete reconstruction of scenes and
undesirable holes in the resulting models. Due to the
costs and difficulties associated with scanning real
environments, the existence of automatic or semi-
automatic tools for helping users to improve the
quality of the acquired models is very desirable.

We have presented a simple and efficient algorithm for
automatically identifying and filling holes on locally
smooth surfaces represented as sets of unorganized
points. Our approach can fill holes in both manifold

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Reconstruction of the surfaces shown in Figure 5 using
different algorithms. First row: results produced by the algorithm
of Davis et al. [11]. Middle row: results produced by the algorithm
of Ju [18]. Bottom row: results produced by our MLS algorithm.

and surfaces with boundaries. In the case of surfaces
with boundaries, user assistance is required to resolve
the inherent ambiguity associated with surface recon-
struction. The algorithm consists of finding boundary
edges and tracing them to identify holes. Once a hole
has been identified, its vicinity is used to interpolate
the missing portion of the surface using moving least
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squares.

Like any interpolation approach, the proposed algo-
rithm works well if the areas inside and around the
hole are locally smooth. Similarly, although the color
interpolation scheme works well for smooth shading,
it cannot be used to reconstruct arbitrary textures. In
this case, the use of texture synthesis such as the one
described in [14,42,44] is more appropriate.

In order to obtain a proper parameterization of the hole
vicinity, the projected boundary should not contain
twists and folds in the direction of the projection onto
the plane. We are currently looking into more general
parameterizations as well as new approaches to deal
with holes of arbitrary shapes and topologies.
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(a) (b) (c)

Fig. 7. UNC reading room armchair. (a) Model reconstructed as a triangle mesh using only the original samples. Notice the large missing
areas.(b) Model obtained after processing the samples in (a) with the symmetry-based techniques described in [40]. (c) Final model without
holes obtained by applying our hole filling algorithm to the model shown in (b).

(a) (b)

Fig. 8. The Stanford bunny. (a) The original model contains some holes. (b) Bunny model after hole filling performed with our algorithm.

(a) (b) (c)

Fig. 9. Bust with a hole in the head used to illustrate the steps of the algorithm. (a) Triangle mesh with the hole and vicinity identified.
(b) Points resampled from the interpolated patch. (c) Final model after hole filling.
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(a) (b) (c) (d)

Fig. 10. Angel with a hole on one wing. (a) Triangle mesh highlighting the vicinity of the hole. (b) Points added inside the hole. (c)
Reconstructed model after hole filling. (d) The actual model for comparison.

(a) (b) (c) (d)

Fig. 11. Happy Buddha. (a) Dark regions indicate holes in the model shown in (b). (c) Model after hole filling performed by our algorithm.
(d) Original model shown for comparison.
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